Лекции по дисциплине Железобетонные и каменные конструкции для студентов заочной формы обучения специальности П Г С — файл Лекции по ЖБК — часть

Лекции по дисциплине Железобетонные и каменные конструкции для студентов заочной формы обучения специальности П Г С - файл Лекции по ЖБК - частьЛекции по дисциплине Железобетонные и каменные конструкции для студентов заочной формы обучения специальности П Г С — файл Лекции по ЖБК- часть.

Лекции по ЖБК- часть.

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ.

Кафедра «Железобетонных конструкций.

К О Н С П Е К Т лекций по дисциплине «Железобетонные и каменные конструкции» для студентов заочной формы обучения специальности П Г С. начитываемых в 9-ом семестре на установочной сессии Авторы конспекта.

Доцент О.Э. Брыжатый.

Доцент Т.Н. Виноградова.

Вашему вниманию предлагается конспект лекций по дисциплине «ЖБК», которые преподаватели кафедры начитывают в период установочной сессии в 9-м семестре (так называемая первая часть курса.

Изучение приведенного материала позволит студенту понять сущность нового для него конструкционного материала=железобетона= и приступить к выполнению курсового проекта №1.

Следует иметь в виду, что при изучении дисциплины не следует ограничиваться только данным конспектом, а обязательно воспользоваться рекомендуемой литературой, список которой приведен в конце конспекта. СОДЕРЖАНИЕ.

1. Лекция 1 . Тема: Сущность обычного и преднапряженного железобетона……….. 4.

^ 2 . Лекция 2 . Тема: Основные физико-механические свойства бетона и арматуры. .10.

3. Лекция 3 . Тема: Основы расчета железобетонных конструкций по предельным состояниям. Принципы конструирования изгибаемых железобетонных элементов……………………………………………………………………………………….. 15.

4. Лекция 4. Тема: Изгибаемые железобетонные элементы……………………………. 20.

5. Лекция 5. Тема: Расчет прочности по нормальным сечениям изгибаемых железобетонных элементов прямоугольного профиля………………………………. 23.

6. Лекция 6 . Тема: Расчет прочности тавровых изгибаемых элементов по нормальным сечениям………………………………………………………………………. 29.

7. Лекция 7. Тема: Расчет прочности изгибаемых элементов по наклонным.

8 . Лекция 8. Тема: Конструирование и расчет прочности сжатых и растянутых железобетонных элементов………………………………………………………………… 37 ^ ЛЕКЦИЯ № 1 Тема: СУЩНОСТЬ ОБЫЧНОГО И ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ЖЕЛЕЗОБЕТОНА План.

1.1. История развития железобетона (краткие сведения.

1.2. Сущность железобетона. Его достоинства и недостатки.

1.3. Преднапряженный железобетон: его сущность и способы создания предварительного напряжения.

1.4. Области применения железобетона.

1.1.История развития железобетона.

Железобетонные конструкции впервые появились в 1850 году во Франции (инж. Ламбо) — была построена лодка, каркас которой состоял из металлической сетки, которая была оштукатурена с двух сторон цементным раствором. В 1861 году во Франции (инж. Куанье) издает первую книгу по железобетону, в которой описывает возможные конструкции из железобетона. В 1867 году зафиксирован первый патент на изготовление железобетонных конструкций — им стал французский садовник Монье, применивший железобетонные кадки для цветов.

Конец ХIХ века считается первым этапом развития железобетона. В это время появляется конструкция ребристого монолитного перекрытия, предложенная французским инженером Геннебиком.

В 30?40 годы ХХ столетия широко применялись монолитные рамные конструкции, тонкостенные пространственные конструкции — цилиндрические оболочки купола. Этот период считается вторым этапом в развитии железобетона.

Идея создания предварительного напряжения конструкций возникла в 1910 году в Германии (инж. Бах). Была произведена серия опытов с преднапряженными балками. В 1928 году во Франции Фрейсине обосновал необходимость использования в качестве арматуры высокопрочной стали и высоких начальных напряжений.

Третий этап развития железобетонных конструкций сопровождался процессом индустриализации и развития теоретических основ железобетона.

1.2. Сущность железобетона. Его достоинства и недостатки.

Бетон и сталь имеют различные физико — механические свойства. Бетон является искусственным камнем и он, как и все естественные камни, хорошо сопротивляется сжатию и значительно хуже растяжению. Прочность бетона при растяжении в 10?15 раз ниже, чем при сжатии. Сталь имеет существенно бо?льшую прочность, и одинаково хорошо сопротивляется как сжатию, так и растяжению.

Сущность железобетона состоит в том, что он представляет рациональное сочетание этих двух материалов — бетона и стали, которые работают совместно вплоть до разрушения.

Ниже приведено стандартное определение железобетона, в котором кратко отражается его сущность.

Железобетон ? это комплексный строительный материал, состоящий из бетона и стальной арматуры . деформирующихся совместно вплоть до разрушения конструкции.

В приведенном определении выделены ключевые слова, отражающие сущность материала. Для выявления роли каждого из выделенных понятий рассмотрим более подробно суть каждого из них.

Бетон ? это искусственный камень, который, как и любой каменный материал, имеет достаточно высокое сопротивление сжатию, а сопротивление растяжению у него в 10?20 раз меньше.

^ Стальная арматура имеет достаточно высокое сопротивление как при сжатии, так и при растяжении.

Объединение этих двух материалов в одном позволяет рационально использовать достоинства каждого из них.

^ Рис. 1. Сопоставление поведения под нагрузкой бетонной (а) и железобетонной (б) балок.

F ? предельная нагрузка (несущая способность), которую воспримет бетонная балка.

N ? то же, для железобетонной балки. На примере бетонной балки рассмотрим, как используется прочность бетона в изгибаемом элементе (рис. 1а). При изгибе балки выше нейтрального слоя возникают сжимающие напряжения, а нижняя зона растянута. Максимальные напряжения в сечениях будут в крайних верхних и нижних волокнах сечения Как только при загружении балки напряжения в растянутой зоне достигнут предела прочности бетона при растяжении R bt . произойдет разрыв крайнего волокна, т.е. появится первая трещина. За этим последует хрупкое разрушение, т.е. излом балки. Напряжения в сжатой зоне бетона ? bc в момент разрушения составят всего 1/10 ? 1/15 часть от предела прочности бетона при сжатии R b . т.е. прочность бетона в сжатой зоне будет использована на 10% и меньше.

На примере железобетонной балки с арматурой рассмотрим, как здесь используется прочность бетона и арматуры. Первые трещины в растянутой зоне бетона появятся практически при той же нагрузке, что и в бетонной балке. Но, в отличие от бетонной балки, появление трещины не приводит к разрушению железобетонной балки. После появления трещин растягивающее усилие в сечении с трещиной будет восприниматься арматурой, и балка будет способна воспринимать возрастающую нагрузку. Разрушение железобетонной балки произойдет только тогда, когда напряжения в арматуре достигнут предела текучести, а напряжения в сжатой зоне — предела прочности бетона при сжатии. При этом, вначале, когда в арматуре достигается предел текучести ? тек . балка начинает интенсивно прогибаться за счет развития в арматуре пластических деформаций. Этот процесс продолжается до тех пор. пока раздавится бетон сжатой зоны при достижении в нем предела прочности при сжатии R b . Так как уровень напряжений в бетоне и арматуре в этом состоянии гораздо выше, чем величина R bt . то это означает, что оно должно быть вызвано большей нагрузкой ( N на рис. 1-б). Вывод — целесообразность железобетона состоит в том, что растягивающие усилия воспринимает арматура, а сжимающие — бетон. Следовательно, основное назначение арматуры в железобетоне состоит в том, что именно она должна воспринимать растяжение ввиду незначительной прочности бетона растяжению. Путем армирования несущая способность изгибаемого элемента, по сравнению с бетонным, можно повысить более чем в 20 раз.

^ Совместное деформирование бетона и арматуры, установленной в нем, обеспечивается за счет сил сцепления . которые возникают при твердении бетонной смеси. При этом сцепление формируется за счет нескольких факторов, а именно: во-первых, благодаря адгезии (приклеивания) цементного теста к арматуре (очевидно, что доля этой составляющей сцепления невелика); во-вторых, за счет обжатия арматуры бетоном вследствие усадки его при твердении; в-третьих, за счет механического зацепления бетона о периодическую (рифленую) поверхность арматуры. Естественно, что для арматуры периодического профиля эта составляющая сцепления наиболее существенна, поэтому сцепление арматуры периодического профиля с бетоном в несколько раз превышает таковую для арматуры с гладкой поверхностью.

Само существование железобетона и его хорошая долговечность оказались возможными благодаря выгодному сочетанию некоторых важных физико — механических свойств бетона и стальной арматуры, а именно.

бетон при твердении прочно сцепляется со стальной арматурой и под нагрузкой оба этих материала деформируются совместно.

бетон и сталь имеют близкие значения коэффициентов линейного температурного расширения. Именно поэтому при изменениях температуры окружающей среды в пределах +50 о С ? -70 о С не происходит нарушения сцепления между ними, так как они деформируются на одинаковую величину.

бетон защищает арматуру от коррозии и непосредственного действия огня. Первое их этих обстоятельств обеспечивает долговечность железобетона, а второе – огнестойкость его при возникновении пожара. Толщина защитного слоя бетона и назначается именно из условий обеспечения необходимой долговечности и огнестойкости железобетона.

При использовании железобетона в качестве материала для строительных конструкций очень важно понимать достоинства и недостатки материала, что позволит применять его рационально, уменьшая неблагоприятное влияние его недостатков на эксплуатационные качества конструкции.

К достоинствам (положительным свойствам) железобетона относят.

1. Долговечность — при правильной эксплуатации железобетонные конструкции могут служить неопределенно долгое время без снижения несущей способности.

2. Хорошая сопротивляемость статическим и динамическим нагрузкам.

Малые эксплуатационные расходы.

Дешевизна и хорошие эксплуатационные качества.

К основным недостаткам железобетона относятся.

Значительный собственный вес. Этот недостаток в некоторой степени устраняется при использовании легких заполнителей, а также при применении прогрессивных пустотных и тонкостенных конструкций (то есть за счет выбора рациональной формы сечений и очертания конструкций.

Низкая трещиностойкость железобетона (из рассмотренного выше примера следует, что в растянутом бетоне должны быть трещины при эксплуатации конструкции, что не снижает несущей способности конструкции). Указанный недостаток может быть снижен с применением преднапряженного железобетона, которое служит радикальным средством повышения его трещиностойкости (сущность преднапряженного железобетона рассмотрена в теме 1.3 ниже.

Повышенная звуко- и теплопроводность бетона в отдельных случаях требуют дополнительных затрат на тепло- или звукоизоляцию зданий.

Невозможность простого контроля по проверке армирования изготовленного элемента.

Трудности усиления существующих железобетонных конструкций при реконструкции зданий, когда увеличиваются нагрузки на них.

1.3. Преднапряженный железобетон: его сущность и способы создания предварительного напряжения Иногда образование трещин в конструкциях, в которых недопустимо по условиям эксплуатации (например, в резервуарах; трубах; конструкциях, экспуатирующихся при воздействии агрессивных сред). Чтобы исключить этот недостаток железобетона, применяют предварительно напряженные конструкции. Таким образом, можно избежать появления трещин в бетоне и уменьшить деформации конструкции в стадии эксплуатации.

Рассмотрим краткое определение предварительно напряженного железобетона.

^ Предварительно напряженной называют такую железобетонную конструкцию, в которой в процессе изготовления которой создают значительные сжимающие напряжения в бетоне той зоны сечения конструкции, которая при эксплуатации испытывает растяжение (рис.2.

Как правило, начальные сжимающие напряжения в бетоне создают с использованием предварительно растягиваемой высокопрочной арматуры.

За счет этого повышается трещиностойкость и жесткость конструкции, а также создаются условия для применения высокопрочной арматуры, что приводит к экономии металла и снижению стоимости конструкции.

Удельная стоимость арматуры снижается с увеличением прочности арматуры. Поэтому высокопрочная арматура значительно выгоднее обычной. Однако применять высокопрочную арматуру в конструкциях без преднапряжения не рекомендуется, т. к. при высоких растягивающих напряжениях в арматуре трещины в растянутых зонах бетона будут значительно раскрыты, снижая при этом необходимые эксплуатационные качества конструкции. Рис. 2. К сущности преднапряженного железобетона.

а – конструкция в стадии обжатия бетона напрягаемой арматурой.

б – в стадии эксплуатации ( ^ N – внешняя нагрузка на конструкцию; Р – усилие предварительного обжатия в арматуре.

Преимущества преднапряженного железобетона перед обычным – это, прежде всего, его высокая трещиностойкость; повышенная жесткость конструкции (за счет обратного выгиба, получаемого при обжатии конструкции); лучшее сопротивление динамическим нагрузкам; коррозионная стойкость; долговечность; а также определенный экономический эффект, достигаемый применением высокопрочной арматуры.

В предварительно напряженной балке под нагрузкой (рис. 2) бетон испытывает растягивающие напряжения только после погашения начальных сжимающих напряжений. На примере двух балок видно, что трещины в преднапряженной балке образуются при более высокой нагрузке, но разрушающая нагрузка для обеих балок близка по значению, поскольку предельные напряжения в арматуре и бетоне этих балок одинаковы. Гораздо меньше также и прогиб преднапряженной балки. При производстве преднапряженных железобетонных конструкций в заводских условиях возможны две принципиальные схемы создания преднапряжения в железобетоне.

преднапряжение с натяжением арматуры на упоры и на бетон.

^ При натяжении на упоры арматуру заводят в форму до бетонирования элемента, один конец ее закрепляют на упоре, другой натягивают домкратом или иным приспособлением до контролируемого напряжения. Затем изделие бетонируется, пропаривается и после приобретения бетоном необходимой кубиковой прочности для восприятия обжатия R bp арматуру отпускают с упоров. Арматура, стремясь укоротиться в пределах упругих деформаций, при наличии сцепления с бетоном увлекает его за собой и обжимает его (рис. 3-а.

^ При натяжении арматуры на бетон(рис. 3-б) сначала изготавливают бетонный или слабоармированный элемент, затем по достижении бетоном прочности R bp создают в нем предварительное сжимающее напряжение. Это осуществляется следующим образом: напрягаемую арматуру заводят в каналы или пазы, оставляемые при бетонировании элемента, и натягивают с помощью домкрата, упираясь прямо в торец изделия. При этом обжатие бетона происходит уже в процессе натяжения арматуры. При этом способе напряжения в арматуре контролируют после окончания обжатия бетона. Каналы в бетоне, превышающие диаметр арматуры на (5?15)мм создают укладкой извлекаемых впоследствии пустотообразователей (стальных спиралей, резиновых трубок и т.д.). Сцепление арматуры с бетоном достигается за счет того, что после обжатия инъецируют (нагнетают в каналы цементное тесто или раствора под давлением через заложенные при изготовлении элемента тройники – отводы). Если напрягаемую арматуру располагают с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров и т.п.), то навивку ее с одновременным обжатием бетона выполняют специальными навивочными машинами. В этом случае на поверхность элемента после натяжения арматуры наносят торкретированием защитный слой бетона.

Натяжение на упоры является более индустриальным способом в заводском производстве. Натяжение на бетон применяется главным образом для крупноразмерных конструкций, создаваемых непосредственно на месте их возведения. Натяжение арматуры на упоры можно осуществлять не только с помощью домкрата, но и электротермическим способом. Для этого стержни с высаженными головками разогревают электротоком до 300 — 350?С, заводят в форму и закрепляют в упорах форм. При восстановлении начальной длины в процессе остывания арматура оказывается растянутой. Арматуру можно также натягивать электротермомеханическим способом (представляет собой комбинацию первых двух способов). Рис. 3. Способы создания предварительного напряжения в железобетоне.

а – с натяжением арматуры на упоры.

б – с натяжением на бетон.

Железобетон находит применение практически во всех областях промышленного и гражданского строительства.

В промышленных и гражданских зданиях из железобетона выполняют: фундаменты, колонны, плиты покрытий и перекрытий, стеновые панели, балки и фермы, подкрановые балки, т.е. практически все элементы каркасов одно- и многоэтажных зданий.

Специальные сооружения при строительстве промышленных и гражданских комплексов — подпорные стены, бункеры, силосы, резервуары, трубопроводы, опоры линий электропередач и т.д.

В гидротехническом и дорожном строительстве из железобетона выполняют плотины, набережные, мосты, дороги, взлетные полосы и т.д.

ЛЕКЦИЯ № 2 Тема: ОСНОВНЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА БЕТОНА И АРМАТУРЫ План.

2.1. Прочность бетона при сжатии и растяжении.

2.2. Арматура для железобетонных конструкций.

2.1. Прочность бетона при сжатии и растяжении. Структура бетона, обусловленная неоднородностью состава и различием способов приготовления, оказывает существенное влияние на все физико-механические свойства.

Прочность бетона зависит от ряда факторов.

? технологические факторы: состав, водоцементное отношение, свойства исходных материалов.

? возраст и условия твердения.

? форма и размеры образца.

? вид напряженного состояния и длительность воздействия. Бетон имеет разное временное сопротивление при сжатии, растяжении и срезе.

Прочность бетона на осевое сжатие.

Различают кубиковую ( R ) и призменную ( R b ) прочность бетона на осевое сжатие. При осевом сжатии кубы разрушаются вследствие разрыва бетона в поперечном направлении. При этом наблюдается явно выраженный эффект обоймы — в кубе у поверхностей, соприкасающихся с плитами пресса (зоны передачи усилий), возникают силы трения, направленные внутрь куба, которые препятствуют свободным поперечным деформациям. Если этот эффект устранить, то временное сопротивление сжатию куба уменьшится примерно вдвое. Опытами установлено, что прочность бетона также зависит от размера образца. Это объясняется изменением влияния эффекта обоймы на деформации бетона с изменением размеров и формы образца (рис. 4.

Поскольку реальные железобетонные конструкции по форме отличаются от кубов, в расчете их прочности основной характеристикой бетона при сжатии является призменная прочность R b — временное сопротивление осевому сжатию бетонных призм. Опыты на бетонных призмах со стороной основания а и высотой h показали, что призменная прочность бетона меньше кубиковой и она уменьшается с увеличением отношения h/a . Влияние сил трения на торцах призмы уменьшается с увеличением ее высоты и при отношении h/a = 4 значение R b становится почти стабильным и равным примерно 0.75R.

Прочность бетона на осевое растяжение.

Зависит от прочности цементного камня на растяжение и сцепления его с зернами заполнителя. Согласно опытным данным, прочность бетона на растяжение в 10 ? 20 раз меньше, чем при сжатии. Повышение прочности бетона на растяжение может быть достигнуто увеличением расхода цемента, уменьшением W/C, применением щебня с шероховатой поверхностью.

Временное сопротивление бетона осевому растяжению (МПа) можно определить по эмпирической формуле.

Вследствие неоднородности бетона эта формула дает лишь приблизительные значения R bt . точные значения получают путем испытания на разрыв образцов в виде восьмерки.

Прочность бетона на срез и скалывание.

Срез представляет собой разделение элемента на две части по сечению, к которому приложены перерезывающие силы. При этом основное сопротивление срезу оказывают зерна крупных заполнителей, работающих, как шпонки. Временное сопротивление срезу можно определить по эмпирической формуле R sh ? 2R bt.

Сопротивление бетона скалыванию возникает при изгибе железобетонных балок до появления в них наклонных трещин. Скалывающие напряжения по высоте сечения изменяются по квадратной параболе. Временное сопротивление скалыванию при изгибе, согласно опытным данным, в 1.5 ? 2 раза больше R bt.

Классы и марки бетона.

В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются.

класс по прочности на осевое сжатие В ; указывают в проектах во всех случаях, как основную характеристику.

для тяжелых бетонов Нормы устанавливают такой ряд классов — В 7.5, В10, В12.5, В15, В20, В25, В30, В35, В40, В45, В50, В55, В60.

для мелкозернистых в зависимости от группы в диапазоне от В 7.5 до В60.

для легких бетонов в зависимости от средней плотности В 3.5 — В40.

класс по прочности на осевое растяжение В t . назначается в тех случаях, когда эта характеристика имеет главенствующее значение и контролируется на производстве; В t 0.8; В t 1.2; В t 1.6; В t 2; В t 2.4; В t 2.8; В t 3.2.

марка по морозостойкости F ; назначают для конструкций, подвергающихся в увлажненном состоянии действию попеременных замораживаний и оттаиваний; Характеризует число выдерживаемых бетоном циклов попеременного замораживания — оттаивания в насыщенном водой состоянии при условии, что снижение прочности составляет не более, чем 15%. Для тяжелого и мелкозернистого бетона — F50, F75, F100, F150, F200, F300, F400, F500. Для легкого бетона — F25 — F500. Для ячеистых — F15 — F100.

марка по водонепроницаемости W ; назначают для конструкций, к которым предъявляются требования ограниченной проницаемости (резервуары и т.п.); W2, W4, W6, W8, W10, W12. Она характеризует предельное давление воды (кг/см 2 ), при котором не происходит ее просачивание через испытуемый образец в пределах требований Норм.

марка по средней плотности D ; назначают для конструкций, к которым кроме требований прочности предъявляются требования теплоизоляции, и контролируют на производстве. Тяжелый бетон от D2200 до D2500; легкий бетон от D800 до D2000; поризованный бетон от D800 до D1400.

Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов.

^ Классом бетона по прочности на осевое сжатие В (МПа) называется временное сопротивление сжатию бетонных кубов с размером ребра 150 мм, испытанных в соответствии со стандартом в возрасте 28 суток при хранении в стандартных условиях (при температуре 20 ? 2?С и влажности не менее 60% ) и принятое с обеспеченностью 0.95.

2.2. Арматура для железобетонных конструкций.

Назначение и виды арматуры.

Как было показано в лекции № 1, арматуру в железобетонных конструкциях устанавливают преимущественно для восприятия растягивающих усилий. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия.

Арматура, устанавливаемая по расчету, называется рабочей; устанавливаемая по конструктивным и технологическим соображениям — монтажной . Монтажная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерного распределения усилий между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, температурных перепадов и т.д.

Рабочую и монтажную арматуру объединяют в арматурные изделия — сварные и вязаные сетки и каркасы, которые размещают в железобетонных конструкциях в соответствии с характером их работы под нагрузкой.

Арматура классифицирована по 4 признакам.

в зависимости от технологии изготовления — стержневая и проволочная. Под стержневой подразумевают арматуру любого диаметра в пределах 6 ? 40мм, причем независимо от того, как она поставляется промышленностью — в прутках (D 12мм, длина до 13м) или в мотках (массой до 1300кг.

в зависимости от способа последующего упрочнения — горячекатанная арматура может быть термически упрочненной, или упрочненной в холодном состоянии — вытяжкой, волочением.

По форме поверхности — бывает периодического профиля или гладкой. Выступы в виде ребер на поверхности стержневой арматуры периодического профиля, рифы или вмятины на поверхности проволочной арматуры значительно улучшают сцепление с бетоном.

по способу применения — напрягаемая и ненапрягаемая арматура.

Механические свойства арматурных сталей.

Характеристики прочности и деформаций арматурных сталей устанавливают по диаграмме напряжения — деформации. Горячекатанная арматурная сталь, имеющая на диаграмме площадку текучести, обладает значительным удлинением после разрыва — до 25% (мягкая сталь). Напряжение, при котором деформации развиваются без заметного увеличения нагрузки, называется физическим пределом текучести арматурной стали, напряжение, предшествующее разрыву, носит название временного сопротивления арматурной стали. Повышение прочности горячекатаной стали и уменьшение удлинения при разрыве достигается введением в ее состав углерода и различных легирующих добавок. Существенного повышения прочности горячекатаной арматурной стали достигают термическим упрочнением или холодным деформированием.

Рис. 5 . Диаграмма деформирования «мягких» арматурных сталей.

Классификация арматуры.

Стержневая горячекатанная арматура в зависимости от ее основных механических характеристик подразделяется на 6 классов с условным обозначением A-I, A-II, A-III, A-IV, A-V, A-VI. Термическому упрочнению подвергают арматуру 4-х классов — Aт-III и выше. Дополнительной буквой С указывается на возможность стыкования сваркой; буква К указывает на повышенную коррозионную стойкость. Подвергнутая вытяжке в холодном состоянии стержневая арматура класса А-III, отмечается дополнительным индексом В.

Стержневая арматура всех классов имеет периодический профиль за исключением гладкой арматуры класса А-I.

Физический предел текучести 230 — 400 МПа имеет арматура классов A-I, A-II, A-III, условный предел текучести 600 — 1000 МПа — высоколегированная арматура классов A-IV, A-V, A-VI и термически упрочненная арматура.

Относительное удлинение после разрыва зависит от класса арматуры. Значительным удлинением обладает арматура классов А-II, A-III (14 -19%), сравнительно небольшим удлинением — арматура классов A-IV, A-V, A-VI и термически упрочненная арматура всех классов (6 — 8.

Арматурную проволоку диаметром 3 — 8мм подразделяют на два класса: Вр-I — обыкновенная арматурная проволока (холоднотянутая, низкоуглеродистая), предназначенная главным образом для изготовления сеток; B-II, Bp-II — высокопрочная арматурная проволока (многократно волоченная, углеродистая), применяемая в качестве напрягаемой арматуры преднапряженных элементов. Периодический профиль обозначается дополнительным индексом р — B p -I, B p -II.

Основная механическая характеристика проволоки — временное сопротивление ? u . которое возрастает с уменьшением диаметра проволоки. Для обыкновенной арматурной проволоки — ? u = 550 МПа, для высокопрочной проволоки — ? u = (1300 – 1900) МПа.

Применение арматуры в конструкциях.

В качестве ненапрягаемой арматуры применяют имеющие сравнительно высокие показатели прочности стержневую арматуру класса A-III, Aт-III, арматурную проволоку класса Bp-I. Если прочность арматуры класса A-III не полностью используется в конструкции из-за чрезмерных деформаций или раскрытия трещин, то возможно применение арматуры класса A-II. Арматуру класса A-I можно применять в качестве монтажной, а также для хомутов вязанных каркасов, поперечных стержней сварных каркасов.

В качестве напрягаемой арматуры рекомендуется применять стержневую термически упрочненную арматуру классов Aт-IV, Aт-V, Aт-VI, горячекатаную арматуру классов. A-IV, A-V, A-VI. Для элементов длиной свыше 12 м целесообразно использовать арматурные канаты классов К-7, К-19 и высокопрочную проволоку, допускается применять стержни классов A-IV, A-V.

При выборе арматурной стали для применения в конструкциях учитывают ее свариваемость. Хорошо свариваются контактной сваркой горячекатанная арматура классов от A-I до A-VI, Aт-IIIC, Aт-IVC и обыкновенная арматурная проволока в сетках.

Арматурные сварные изделия.

Сварные сетки изготавливают по стандарту из обыкновенной арматурной проволоки диаметром 3 ? 5мм и арматуры класса A-III диаметром 6 ? 10мм. Сетки бывают рулонные и плоские. В рулонных сетках наибольший диаметр продольных рабочих стержней — 7мм. Ширина сетки ограничена размером 3800мм, масса рулона не более 1300кг, Причем длина сетки не более 9м.

Основные параметры стандартных сеток в маркировке D-v.

где ^ D, d — диаметры продольных и поперечных стержней.

v, u — шаг продольных и поперечных стержней.

Плоские сварные каркасы изготавливают из одного или двух продольных рабочих стержней и привариваемых к ним поперечных стержней. Концевые выпуски продольных и поперечных стержней должны быть не менее 0.5D+d или 0.5d+D и не менее 20мм.

Пространственные каркасы образуют из плоских, в ряде случаев применяя соединительные стержни.

Тема . ОСНОВЫ РАСЧЕТА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ. ПРИНЦИПЫ КОНСТРУИРОВАНИЯ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ.

3.1. Стадии напряженно — деформированного состояния.

3.2. Метод расчета ЖБК по предельным состояниям.

3.3. Классификация нагрузок и сопротивлений бетона и арматуры в МПС.

3.4. Конструирование изгибаемых железобетонных балок и плит.

3.1. Три стадии напряженно — деформированного состояния железобетонных элементов.

Опыты с различными железобетонными элементами — изгибаемыми, внецентренно растянутыми, а также внецентренно сжатыми с двузначной эпюрой напряжений показали, что при постепенном увеличении нагрузки можно наблюдать три характерные стадии напряженно — деформированного состояния (в дальнейшем будем применять сокращенный вариант этого термина — НДС.

стадия 1 — до появления в бетоне растянутой зоны трещин, когда напряжения в нем меньше временного сопротивления растяжению и растягивающие усилия воспринимаются арматурой и бетоном совместно.

стадия Iа – непосредственно перед появлением первой трещины в растянутом бетоне; в этом состоянии напряжения в крайнем растянутом волокне бетона достигают предела прочности бетона на растяжение. т.е. ? bt = R bt.

стадия II — после появления трещин в бетоне растянутой зоны, когда растягивающие усилия в местах, где образовались трещины, воспринимаются арматурой и участком бетона над трещиной, а на участках между трещинами — арматурой и бетоном совместно.

стадия III — стадия разрушения, характеризующаяся относительно коротким периодом работы элемента, когда напряжения в растянутой стержневой арматуре достигают физического или условного предела текучести, а в высокопрочной проволоке — временного сопротивления, а напряжения в бетоне сжатой зоны — временного сопротивления сжатию. В зависимости от степени армирования элемента последовательность разрушения зон — растянутой и сжатой — может изменяться. Рис. 6 . Три стадии напряженно-деформированного состояния изгибаемого железобетонного элемента.

Выявленные характерные стадии НДС железобетонных конструкций позволили разработать методику расчета ЖБК, которая называется –«Метод предельных состояний» (в дальнейшем будем применять сокращенное обозначение этого термина МПС ), положенный в основу действующих Норм проектирования конструкций (СНиП 2.03.01-85.

При этом каждая из рассмотренных стадий НДС положена в основу того или иного расчета в зависимости от задачи соответствующего расчета. Например, стадия разрушения используется в расчете прочности сечений железобетонных элементов, так задача расчета прочности заключается в предотвращении разрушения; стадия Іа –положена в основу расчета по образованию трещин в железобетонных элементах, так как его задача – определить, образуются ли трещины в растянутом бетоне сечения, и т.д.. 3.2. Метод расчета ЖБК по предельным состояниям.

Сущность метода расчета конструкций по предельным состояниям.

Сущность метода в том, что устанавливаются предельные состояния и вводится система расчетных коэффициентов, гарантирующих конструкцию от наступления этих предельных состояний при самых невыгодных сочетаниях нагрузок и минимальной прочности материалов.

Предельным называют такое состояние конструкции, при котором она (конструкция) перестает отвечать предъявляемым к ней требованиям (например, в ней образуются трещины, когда они недопустимы по условиям эксплуатации; либо ее прогибы превышают предельно допустимые; либо конструкция разрушается.

Две группы предельных состояний.

В МПС установлены две группы предельных состояний, у каждой из которых свои определенные задачи, и в каждую из которых входит несколько расчетов, обеспечивающих достижение этих задач.

^ Первая группа предельных состояний называется – предельные состояния по несущей способности (иначе его называют – по пригодности к эксплуатации.

Расчет по 1 группе предельных состояний выполняют, чтобы гарантировать несущую способность конструкции. то есть предотвратить следующие явления.

хрупкое, вязкое или иного характера разрушение (расчет по прочности.

потерю устойчивости конструкции (расчет на устойчивость тонкостенных конструкций) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т.п.

усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющихся подвижных или пульсирующих нагрузок: подкрановых балок, шпал, рамных фундаментов или перекрытий под неуравновешенными машинами.

разрушение от совместного воздействия силовых факторов и неблагоприятных воздействий внешней среды (агрессивность среды, попеременное замораживание и оттаивание и т.п.). ^ Вторая группа предельных состояний объединяет предельные состояния по пригодности к нормальной эксплуатации конструкций.

Во вторую группу входят расчеты.

по образованию трещин.

по раскрытию трещин.

по закрытию трещин.

Как видно из названий этих расчетов, их задача состоит в обеспечении нормальной эксплуатации конструкций или оборудования, расположенного на них. Для того, чтобы понять смысл методики МПС, рассмотрим кратко подход к назначению основных расчетных факторов в МПС.

3.3. Классификация нагрузок и сопротивлений бетона и арматуры в МПС.

Расчетные факторы.

Расчетные факторы — нагрузки и механические характеристики бетона и арматуры (временное сопротивление, предел текучести) — обладают статистической изменчивостью (разбросом значений). Нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов — от заданной вероятности снижения средних значений. В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и механических характеристик материалов, факторы нестатического характера, а также различные неблагоприятные или благоприятные физические, химические и механические условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Нагрузки, а также механически

Понравилась статья? Поделиться с друзьями:
Добавить комментарий